Electrophysiological properties and responses to simulated ischemia in cat ventricular myocytes of endocardial and epicardial origin.
نویسندگان
چکیده
In multicellular preparations, there are differences in action potential configuration between endocardium and epicardium, and electrophysiological alterations induced by ischemia are more drastic in epicardium than in endocardium. The present study was designed to examine electrophysiological properties of single cardiac myocytes enzymatically isolated from the endocardial and epicardial surfaces of the cat left ventricle and to determine whether the differential responses to ischemia of intact tissue occur in single cells. Action potentials recorded from the isolated single cells of epicardial surface had lower action potential amplitude and a prominent notch between phase 1 and phase 2, compared with those of the cells isolated from the endocardial surface; these findings are similar to those in intact endocardial and epicardial preparations. Resting membrane potentials recorded from both endocardial and epicardial single cells were sensitive to the change in extracellular K+ concentration and had properties of a K+ electrode. Action potential duration was frequency dependent in both cell types and was shorter in epicardial cells than in endocardial cells at a stimulation rate of 3 Hz. When the cells were superfused with Tyrode's solution that was altered to mimic an ischemic environment in vivo (PO2, 30-40 mm Hg; pH 6.8; [K+], 10 mM; and glucose free), resting membrane potential, action potential amplitude, and action potential duration were reduced, and the refractory period was shortened in both endocardial and epicardial single cells, but there were no differences in the degree of changes in action potentials and refractory periods induced between the two cell types. Action potential changes induced by L-alpha-lysophosphatidylcholine (5-40 mg/l) were also similar in endocardial and epicardial single cells.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Simulated Ischemia in Cat Ventricular Myocytes of Endocardial and Epicardial Origin
In multicellular preparations, there are differences in action potential configuration between endocardium and epicardium, and electrophysiological alterations induced by ischemia are more drastic in epicardium than in endocardium. The present study was designed to examine electrophysiological properties of single cardiac myocytes enzymatically isolated from the endocardial and epicardial surfa...
متن کاملDifferences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current.
BACKGROUND Acute ischemia is known to produce more severe electrophysiological disturbances in canine ventricular epicardium than endocardium, although the mechanism for the differential sensitivity is still unresolved. Recent studies have demonstrated the presence of a prominent transient outward current (Ito) in ventricular epicardium but not endocardium. The present study was designed to tes...
متن کاملRole of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia.
Epicardial cells are more susceptible to the electrophysiological effects of ischemia than are endocardial cells. To explore the ionic basis for the differential electrophysiological responses to ischemia at the two sites, we used patch-clamp techniques to study the effects of ATP depletion on action potential duration and the ability of ATP-regulated K+ channels in single cells isolated from f...
متن کاملDifferences in the effect of metabolic inhibition on action potentials and calcium currents in endocardial and epicardial cells.
BACKGROUND Ischemia-induced electrophysiological changes are more prominent in epicardial cells than in endocardial cells. Epicardial action potentials shorten more than endocardial action potentials during ischemia. Since the L-type Ca2+ current plays an important role in the maintenance of action potential duration, we hypothesized that the Ca2+ current is affected more in epicardial cells th...
متن کاملRegional effects of verapamil on recovery of excitability and conduction time in experimental ischemia.
This study was designed to test the hypothesis that verapamil has an effect on ischemia-initiated arrhythmias related to its regional influences on recovery of excitability and conduction time. Using a coronary perfused preparation of cat left ventricle that allows simultaneous electrophysiologic monitoring of both endocardium and epicardium, we studied the effect of verapamil on ischemia-induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 66 2 شماره
صفحات -
تاریخ انتشار 1990